1 The value $£ V$ of a car t years after it is new is modelled by the equation $V=A \mathrm{e}^{-k t}$, where A and k are positive constants which depend on the make and model of the car.
(i) Brian buys a new sports car. Its value is modelled by the equation

$$
V=20000 \mathrm{e}^{-0.2 t}
$$

Calculate how much value, to the nearest $£ 100$, this car has lost after 1 year.

[2]

(ii) At the same time as Brian buys his car, Kate buys a new hatchback for $£ 15000$. Her car loses $£ 2000$ of its value in the first year. Show that, for Kate's car, $k=0.143$ correct to 3 significant figures.
(iii) Find how long it is before Brian's and Kate's cars have the same value.

2 The temperature $\theta^{\circ} \mathrm{C}$ of water in a container after t minutes is modelled by the equation

$$
\theta=a-b \mathrm{e}^{-k t}
$$

where a, b and k are positive constants.
The initial and long-term temperatures of the water are $15^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. After 1 minute, the temperature is $30^{\circ} \mathrm{C}$.
(i) Find a, b and k.
(ii) Find how long it takes for the temperature to reach $80^{\circ} \mathrm{C}$.

3 Oil is leaking into the sea from a pipeline, creating a circular oil slick. The radius r metres of the oil slick t hours after the start of the leak is modelled by the equation

$$
r=20\left(1-\mathrm{e}^{-0.2 t}\right)
$$

(i) Find the radius of the slick when $t=2$, and the rate at which the radius is increasing at this time.
(ii) Find the rate at which the area of the slick is increasing when $t=2$.

4 A termites' nest has a population ofP million. P is modelled by the equation $P=7-2 \mathrm{e}^{-k t}$, where t is in years, and k is a positive constant.
(i) Calculate the population when $t=0$, and the long-term population, given by this model.
(ii) Given that the population when $t=1$ is estimated to be 5.5 million, calculate the value of k.

5 The area of a circular stain is growing at a rate of $1 \mathrm{~mm}^{2}$ per second. Find the rate of increase of its radius at an instant when its radius is 2 mm .

6 (i) On a single set of axes, sketch the curves $y=\mathrm{e}^{x}-1$ and $y=2 \mathrm{e}^{-x}$.
(ii) Find the exact coordinates of the point of intersection of these curves.

7 The height h metres of a tree after t years is modelled by the equation

$$
h=a-b \mathrm{e}^{-k t}
$$

where a, b and k are positive constants.
(i) Given that the long-term height of the tree is 10.5 metres, and the initial height is 0.5 metres, find the values of a and b.
(ii) Given also that the tree grows to a height of 6 metres in 8 years, find the value of k, giving your answer correct to 2 decimal places.

